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In this paper we consider theoretical and experimental aspects of axisymmetric, 
swirling flow which is generated in a column of liquid metal by a rotating magnetic 
field. Two cases are discussed, one in which there is no axial variation in the stirring 
force, and one where the body force is restricted to a relatively short length of the 
column. The latter case is of considerable practical interest in continuous casting. 

One-dimensional stirring, where the swirl is independent of z and 8, is well 
understood. The magnetic body force is balanced by shear, all inertial forces being 
zero (except for the centripetal acceleration). However, in two-dimensional 
axisymmetric stirring, the axial variation in swirl drives a strong secondary poloidal 
flow. The principal local force balance is between the magnetic torque and inertia. 
The body force spins up the fluid as it passes through the forced region and the 
secondary flow sweeps this angular momentum into the unforced region. Con- 
sequently, the size and distribution of the swirl is controlled by the secondary 
flow. 

The role of wall friction is considered and shown to control the length of the 
recirculating eddy. An approximate solution of the inviscid equations of motion, 
based on the angular momentum integral, is derived for the flow in the forced region. 
This is compared with the results of numerical experiments. 

The analysis predicts that the swirl velocity scales on {B(a/pw)i}oR, has a 
maximum at the bottom of the driven region, and penetrates an axial distance of the 
order RR away from the forced region. (For turbulent flow the Reynolds number R 
must be based on an effective eddy viscosity.) All these features were reproduced 
experimentally. 

1. Introduction 
Swirling, recirculating flows have generally been studied in truncated cylinders 

where the flow is driven by the rotation of one or both ends of the cylinder (see 
Batchelor 1951 ; Greenspan 1968). The origin of the secondary flow is a radial force 
imbalance between the centripetal acceleration and radial pressure gradient in the 
boundary layer on the endwalls of the container. In these boundary layers the swirl 
velocity adjusts from that of the core of the flow to that of the endwall. Thus the 
centripetal acceleration changes across the boundary layer. The radial pressure 
gradient, however, is impressed on the boundary layer by the outer core flow and is 
such as to balance the centripetal acceleration in the core. The resulting force 
imbalance within the boundary layer produces radial outflow or inflow, depending on 
whether the endwall is spinning faster or more slowly than the core. Our study of the 
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FIGURE 1. Diagrammatic representation of the continuous casting process. 

literature indicates that, even for laminar flow, the overall structures of these flows 
are not well understood. 

A different kind of secondary flow can be produced when the swirl is generated by 
body forces. In this case the swirl may vary axially by virtue of an axial gradient in 
the body force. Provided this axial gradient is small, the centripetal acceleration is 
balanced by a radial pressure gradient. The result is an axial variation in pressure 
which drives a secondary flow. It is this second situation which is discussed here. 

The aim of this paper is to show, by detailed calculation and experiment, that some 
general scaling arguments may be derived. Some of the major qualitative questions 
that we have considered in our analysis, and that have not been considered in 
previous studies, are : 

(i) How does the flow depend on the variation of the driving force F8 along the 
cylinder, or the ratio of its length scale L, to the radius R ?  

(ii) What is the effect of wall roughness and the location of the endwalls of the 
cylinder on the recirculation ? 

(iii) What is the relative strength of the recirculating flow to the swirling flow ? 
(iv) Where is the position of maximum swirl? (We shall see that it does not occur 

at the position of maximum body force.) 
This study has been directed particularly towards understanding the swirl 

generated in a liquid-metal column by the application of an electromagnetic body 
force. This has the simplifying property that the forcing is independent of the fluid 
motion (provided that the fluid velocity is not too large), which is not the case for 
mechanically-driven flows. This magnetohydrodynamic problem has received 
considerable attention because it is a good representation of rotary electromagnetic 
stirring of continuously cast steel. 

The continuous casting process is shown in figure 1. Molten steel is poured into a 
water-cooled copper mould where it forms a solid skin. A partially solidified steel 
strand is slowly drawn from the bottom of the mould. An improved crystalline 
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structure may be obtained by stirring the steel as it solidifies, and this has led to the 
increasing use of electromagnetic stirring. Stirrers have been placed at a variety of 
axial positions along the strand, including around the mould. Despite extensive 
empirical research, there is, rn yet, little consensus as to optimum stirring 
configurations (Davidson 1986), reflecting a basic lack of understanding of the 
process. Typical magnetic force distributions are shown in figure 2. This also shows 
the coordinate system used here. 

In this paper we shall restrict attention to axisymmetric flow in a circular column. 
Often rotation rates are sufficiently low that the free surface of the fluid remains 
relatively flat and acts as a plane of symmetry. The problems of mould and sub- 
mould stirring are then identical. We shall ignore the taper, shown in figure 1, which 
results from the variable shell thickness. 

The characteristic velocity and lengthscales can be derived by considering orders 
of magnitude of terms in the governing equations. This is done in more detail later. 
However it is instructive to show here that the primary and secondary flows will, in 
general, be of similar magnitudes. 

Independent scales are R,  Fe and L, the lengthscale along the cylinder of the force. 
From the Navier-Stokes equations we find that, in the forced region of the flow, 

and hence, ue N U Z  - (FeLJp)’. 

We have assumed here that the body force is balanced by inertia, rather than 
shear. This will be true provided there exists a sizeable secondary flow. This, in turn, 
requires Fe to vary significantly with z. Note that the primary and secondary flows 
are of the same order of magnitude. 

When Fe does not vary significantly with z (i.e. Lf+  ao), we get a one-dimensional 
swirl flow, u = ue(r)2e, in which the secondary flow is zero. This flow has been 
investigated experimentally by Robinson (1973), theoretically by Moffatt (1978) and 
Davidson (1985), and numerically by Tacke & Schwerdtfeger (1979). We shall review 
some of its salient features in $3. It is shown that this type of flow is characterized 
by the fact that Fe is balanced by shear, rather than inertia. 

In the rest of the paper we consider a two-dimensional axisymmetric model of 
stirring in which Fe is allowed to vary with z and significant secondary flows develop 
(L, - R). This is a more realistic model of stirring during continuous casting. Some 
qualitative features of this flow have been discussed previously by Davidson & 
Boyson (1987). 

The complex nonlinear form of the equations of motion precludes the development 
of an exact analytical solution in this case. However it is possible to develop an 
approximate ‘integral-type’ solution. This is discussed in $7. In $8 we shall show that 
this approximate solution is consistent with the results of some numerical 
experiments, and in $12 we compare the solution with laboratory experiments. 
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FIGURE 2. Typical magnetic body force distributions. 

2. The body force induced by a rotating magnetic field 

diffusion equation for B 
The magnetic field distribution in a liquid metal is governed by the advection- 

1 _-  - V x (U x B)+-V2B. aB 
at v 

The relative size of the advection to  diffusion terms is given by the magnetic 
Reynolds number 

R, = pucruR. 

R, is almost invariably small in industrial and laboratory electromagnetic 
stirring, allowing us to ignore advection of B. In  this approximation the fluid is 
treated as a stationary solid conductor. 

The ratio of the time-derivative term to the diffusion term is given by the skin- 
depth parameter 

A = R'WU,U. = 2(R/S)', 

where w is the frequency of rotation or oscillation of B, and d = (2 /pvw) i  is the skin- 
depth. ( A  is sometimes given the alternative symbol R,.) 

We shall look at the limiting condition where A is assumed to  be small, although 
larger than R, 

This requirec the skin depth to be large relative to  R, and is referred to as a low- 
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frequency approximation. It is shown by Tacke & Schwerdtfeger (1979) that, in the 
context of magnetic stirring, a low-frequency analysis can be a good approximation 
(to within 4%) for values of A as high as 2.8. Table 2 shows that, in the experiments 
discussed in $9 through $12, A = 2.2. That a low-frequency analysis (A +0) is a good 
approximation, is confirmed in $12 by comparing measurements of B, with and 
without the liquid metal present. It is shown that B is unperturbed by the presence 
of the fluid. 

Since we have assumed R, << A ,  a condition almost always met in practice, we may 
deduce 

u << wR. 

This implies that the field advection term in the advection-diffusion equation for B 
is much smaller than the time derivative of B. This is often taken as an alternative 
condition for the field advection term to be negligible. 

The magnetic body force induced in an infinitely long metal column, of a circular 
cross-section, by a uniform, transverse, rotating magnetic field is well known (see, for 
example, Dahlberg 1972). The body force in the metal, in the low-frequency limit, 
is 

F, = iB2crwr. 

There is also an oscillatory component of force, of frequency 2w. However, this is 
irrotational and consequently drives no fluid motion. In $11, we shall show that, 
although the geometry of the magnetic field in our experiments is very different to 
that considered by Dahlberg (1972), the body force generated in the liquid metal is 
similar to the equation above, to first order in r .  We shall now consider the nature 
of the induced body force for an arbitrary, low-frequency, rotating magnetic field. 

The combined conditions of low magnetic Reynolds number and large skin depth 
make the expressions for the electromagnetic body force particularly simple since B 
remains unperturbed by either advection or time variation. The essence of the low- 
frequency (A +0) approximation is to ignore the magnetic field generated by eddy 
currents and consider only an imposed irrotational field. The current density is then 
determined by substituting this B field into Faraday’s equation and the force 
distribution follows. This may be shown formally by performing a perturbation 
analysis on the advection-diffusion equation for B, in the limit of A + 0. 

Let B, be the imposed irrotational field, with vector potential A,. (We choose the 
gauge of A, such that V A, = 0.) Faraday’s equation gives the induced electric field 
as 

aA E =  - o - V @ .  
at 

@ is the instantaneous electrostatic potential which we may take to be zero (see 
Davidson 1986). The current density and body-force distribution follow from the 
above equation. Thus the body force may be calculated directly from A,, the 
imposed, free-space field. (Note that V2A, = 0.) 

The body force F will, in general, contain both a static and an oscillatory 
component, at frequency 2w. It was noted, that, for a uniform transverse field 
rotating about a long cylinder, the oscillatory component is irrotational and 
consequently drives no fluid motion. For other field geometries, however, the 
oscillatory component need not be irrotational. None the less, it may still be 
neglected, since the induced oscillatory component of velocity, u‘, will be significantly 
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smaller than the mean component, u. This may be seen by comparing inertial and 
electromagnetic terms in the NavierStokes equations 

from which 

pu-vu - pu2 - - F, 
R 

It is clear that ignoring the oscillatory components of force and velocity is 
consistent with our initial assumptions. 

To develop an understanding of rotary electromagnetic stirring, a compromise 
must be sought in terms of the relative complexity of modelling. A model which is 
too simple may not incorporate the necessary physical processes to explain observed 
behaviour adequately. On the other hand, an analysis which incorporates too much 
detail, in terms of the magnetic field distribution or turbulent fluid motion, will lack 
generality in that a particular solution may only be obtained by numerical 
analysis. 

It is apparent from a survey of the technical literature that there is a large variety 
of magnetic field geometries used for rotary magnetic stirring. Yet there is a 
requirement for a hydrodynamic analysis which has some generality, and is not 
restricted to a particular arrangement of inductors. Consequently, we shall look for 
a ‘model’ body-force equation which will hold true, a t  least approximately, in a 
range of magnetic field geometries. 

For a low-frequency rotating field, dimensional analysis shows that the 
axisymmetric, steady, azimuthal component of the body force must have the general 
form 

Here B is a characteristic field strength, and the geometric lengthscale is taken as R.  
The function F is dimensionless and is of the order of unity. 

We may expand F(r/R, z/R) as a Taylor series about the axis r = 0 

For symmetric field geometries, the even terms in this series must be zero 

To first order in r / R ,  the body force is then 

where 

Fe = {+B2uwr} f (g), 
f(;) = 2 F 1 ( i ) .  

If f ( z /R )  is taken as unity, then we obtain the expression given earlier for the force 
generated by a uniform field rotating around an infinitely long conducting cylinder. 
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We shall adopt the equation above as our model force and use it for the body-force 
term in the Navier-Stokes equation. This has the advantage that it covers the 
uniform field case (f(z/R) = l) ,  which is the basis of many previous studies. The 
disadvantage of using this equation is that, in general, it  gives a poor estimate of 
Fe for large r .  In $11 we shall show that, for the field geometry used in the 
experiments, the linearization of F, in r leads to an overestimate of the net applied 
magnetic torque of about 60%. 

In addition to the azimuthal force, there will, in general, be radial and axial 
components of force. However, these are often negligible. For example, in the case 
of a uniform field rotating about a long circular cylinder, F, and Fz are zero. In 
magnetic field geometry used in the experiments, Fz is shown to be zero, F,., on 
other hand, is non-zero, but only at third order in r / R  (see $11). 

It is convenient to introduce a characteristic velocity, V, defined as 

V = {B(a/po)i} wR. 

The body-force equation then becomes 

It is apparent that the induced velocity scales on B 
inertial term, pu- Vu, in the NavierStokes equations. 
hydrodynamic consequences of this body force. 

when Fe is balanced by 
We shall now consider 

the 
the 

(1) 

the 
the 

3. Onsdimensional models of stirring 
We shall review briefly the nature of the flow field which results when there is no 

axial variation in the body force. If we takef(z/R) = 1 in equation (l), then 

This force drives a one-dimensional swirl flow ue(r), continuity requiring the radial 
component of velocity to be zero. The radial component of the time-averaged 
Navier-Stokes equations show that the centripetal acceleration is balanced by a 
radial pressure gradient. The azimuthal component may be integrated to give the 
shear-stress distribution. Let t) be the fluctuating component of velocity ; then 

Substituting for Fe we deduce 

This swirl flow is analogous to rectilinear flow in a pipe. In both situations we have 
an imposed shear-stress gradient. In  this case the shear stress is determined by Fe, 
while in pipe flow it is determined by the axial pressure gradient. The shear stress 
may be determined at the outset because there are no inertial effects (except for the 
centripetal acceleration). 
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For laminar flow, (2) may be integrated to give 

This well-known result shows that, in laminar flow, the velocity scales on the 
square of the magnetic field strength. By Rayleigh’s criterion, this profile is prone to  
instabilities near the wall where the angular momentum is a decreasing function of 
radius. 

Most swirling flows which occur in practice are turbulent. In  a turbulent shear flow 
we expect uo to  scale on the shear velocity V,, and hence 8. 

Thus, in contrast to  the laminar flow, the turbulent mean velocity scales linearly on 
field strength B. 

The solution of (2) for turbulent flow requires an estimate of the Reynolds stress. 
A two-parameter (k, w)-turbulence model has been used by Tacke & Schwerdtfeger 
(1979) to compute the flow. This assumes that the turbulent shear stress is 
proportional to the local mean velocity gradient and a local diffusivity. The 
diffusivity is calculated from the turbulence kinetic energy k and mean frequency w .  
The parameters k and w are, in turn, determined by empirical transport equations. 
This turbulence model is similar to the more commonly used (k, €)-model (see Rodi 
1984). Such an approach has the disadvantage of requiring the simultaneous solution 
of the Navier-Stokes equations and two subsidiary transport equations. It is 
therefore complex, and tends to obscure the underlying trends. An alternative 

At high Reynolds numbers, gradients near the wall become sufficiently large that 
the fluid adjacent to  the wall is approximately in a state of rectilinear motion. Since 
curvature effects are locally unimportant, the velocity in the inertial sublayer must 
have the standard logarithmic form. 

approach is given by Davidson (1985) and is summarized b-1 u ow. 

where v* = Y / 2 2 / 2 .  

The problem is now one of extending this velocity profile into the core of the flow. 
We may speculate, however, that this shear flow is largely controlled by events near 
the wall, as in axial pipe flow. I n  such a situation we would expect the computed core 
velocity profile to be insensitive to the turbulence model used, provided that the 
model gives the correct velocity near the wall. The simplest turbulence model which 
satisfies this requirement is ‘mixing length’. Application of this results in an explicit 
equation for the angular velocity on the axis 

R (3) 

This equation is consistent with numerical experiments performed by Tacke & 
Schwerdtfeger (1979) using the (k, w)-turbulence model, and compares favourably 
with the experimental data of Robinson (1973). 
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FIGURE 3. Core angular velocity for one-dimensional flow. 

If the wall is rough, then the lengthscale near the wall changes from v /V,  to 
k', the roughness height, and equation (3) must be replaced by 

(4) 

It is important to distinguish between smooth- and rough-wall flow. For parameter 
values typical of a continuous casting plant, (4) predicts a velocity only half that 
predicted by (3). The difference between (3) and (4) is illustrated in figure 3. 

4. Two-dimensional axisymmetric stirring - a statement of the problem 
In one-dimensional flow a fluid particle experiences no azimuthal acceleration and 

consequently the magnetic torque must be locally balanced by shear. Unfortunately, 
the one-dimensional analysis is quite misleading in cases where F6 varies with z. 
Consider the force distribution shown in figure 2 where the magnetic torque is applied 
only over a relatively short length of the column. The result of this localized forcing 
is differential rotation between forced and unforced regions. We shall show that, 
provided aF6/az 4 F,/R, the centripetal acceleration is balanced by a radial pressure 
gradient. This implies the existence of an axial variation in pressure, which, in turn, 
drives a secondary poloidal flow. (Poloidal motion is that in the ( r ,  2)-plane.) 

We shall show that the secondary flow is as large as the primary swirl flow. Since 
the inertial forces are now non-zero, and the Reynolds number assumed to be large, 
the magnetic body force is locally balanced by inertia rather than shear. This results 
in a scaling law for the swirl velocity which is entirely different to that deduced from 
a one-dimensional model, 

The analysis presented here is for laminar flow. In practice, however, most swirl 
flows of interest are turbulent. In order to interpret the analysis in terms of a 
turbulent flow, the Reynolds number should be regarded as an effective Reynolds 
number R, = VR/v,.  (v, is an eddy viscosity.) We shall see in $8 that typical effective 
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Reynolds numbers R, are of the order of 30. This somewhat simplistic approach may 
be reasonable for this flow since, as we shall show, the broad features of the flow are 
determined by the inertia and are insensitive to the details of the shear. 

It is convenient to split the velocity field u into azimuthal u, = (O,u,, 0) and 
poloidal up = (u?, 0, u,) components and examine the interaction between them 

U = Up + Ug. 
Since we are considering axisymmetric flow, V - U ,  = 0. 

The vorticity may be similarly divided where wp = V x u, and w, = V x up. Thus 
u,, or up, represent the primary flow, while up, or we, represent the secondary 
flow. 

The Navier-Stokes equation may also be split into azimuthal and poloidal 
components. Taking the curl of the poloidal component to eliminate pressure, we 
obtain 

( 5 )  

(6) 

1 

P 
up x up + vV2U, = -- F0 t?,, 

v x (up x we) + vv2w, = - v x (ug x wp), 

where v x (u, x wp) = - - 49. 
az a [““I r (7) 

Our formal problem is to solve these equations in a cylinder r = R, z > 0, subject 
to  u = 0 on the boundary. Equation ( 5 )  gives the azimuthal force balance. For a high 
Reynolds number we expect the body force to  be locally balanced by the inertial 
term up x up. Thus the magnetic torque is balanced by the product of the primary 
and secondary flows. We shall see that up x wp represents an angular momentum flux. 
This is in contrast to  the one-dimensional flow where the body force is balanced by 
the shear term vV2U,. 

For a given primary flow, the secondary flow is determined by (6). This is an 
advection-diffusion equation for the azimuthal vorticity and corresponding poloidal 
velocity. It is coupled to  the azimuthal velocity through the source term V x (u, 
x wp). This represents a spiralling of the poloidal vortex lines by the azimuthal 
velocity, generating azimuthal vorticity. This process is illustrated in figure 4 and is 
the source of the secondary flow. This field-sweeping effect does not occur if uo is 
independent of z ,  since in such a situation the poloidal vortex lines lie parallel to the 
axis and u, is constant along a vortex line. 

Equation (7) shows that the source term may be written in terms of the axial 
gradient of the centripetal acceleration. The explicit appearance of the centripetal 
acceleration is consistent with the explanation for the generation of a secondary flow 
given a t  the beginning of this section. However, since the pressure force is 
conservative, it is more useful to interpret the generation of secondary flow in terms 
of vortex sweeping. 

It is useful to rewrite ( 5 )  and (6) in the following form: 
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FIQURE 4. Generation of secondary flow by sweeping of poloidal vorticity. 

These are scalar transport equations for uo/ r  and r = ugr,  the angular momentum. 
It may be shown, by writing V x Ug in component form, that r is the stream function 
for the poloidal vorticity. In the absence of shear or body forces, (8) shows that r is 
advected unchanged along a streamline. This is consistent with Kelvin's circulation 
theorem applied to an axisymmetric material hoop. 

The shear terms in the transport equations are not purely diffusive, although their 
effect is often diffusive in nature. This may be illustrated by considering closed 
streamline flow in which the body force is zero. It was shown by Batchelor (1956) 
that if closed streamlines exist in a region of small but finite viscosity, r and o e / r  are 
constant throughout that region. This is consistent with inspection of (8) and (9). 
Equation (8) suggests that r is a constant on each streamline, while the shear term 
causes slow diffusion of r between streamlines. This eventually leads to a region of 
constant r. The same argument applied to (9) suggests that we/r  is constant 
throughout the region. 

Returning to the problem in hand, (9) suggests that the secondary poloidal flow is 
of the form shown in figure 5. The attenuation of swirl with depth acts as a source 
of negative azimuthal vorticity. This is associated with a secondary flow as 
shown. 

Equation (8) shows that the magnetic torque is balanced by a flux of angular 
momentum out of the forced region. Fluid entering the forced region is spun up by 
the body force, and the angular momentum generated here is swept into the unforced 
region by the secondary flow. The shear terms in (8) and (9) allow the vortex sheet, 
created a t  the wall by the no-slip condition, to diffuse into the flow. Since this is a 
slow process, the diffusion occurs primarily in the unforced region. 

It is shown in Appendix B that the forced and diffusive regions are linked by an 
overlap region in which both the shear stress and the body force are negligible. 

We have already noted that we expect Fe to be balanced locally by inertia. 
However we cannot dispense with the shear term in (8) and (9) since they are 
essential for the dissipation of the energy created by Fe. This may be illustrated by 
integrating the Navier-Stokes equation along a streamline to obtain a form of 
Bernoulli's equation 

b+4pu2],2 = p u p ' u - d r + P - d r .  1 
1 

If the integration along a streamline is taken around a closed path in the (r ,z)-  
plane (this need not be a closed Streamline since 0 need not change by an integer 
multiple of 2n), then we deduce 

f f  F-dr+pv V2u.dr = 0. (10) 

This states that the energy gained by a fluid particle, by virtue of the work done by 
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FIGURE 5. Poloidal velocity in two-dimensional stirring. 

Fo, must be diffused out of the particle by shear. Thus all streamlines must pass 
through a boundary layer. A similar argument may be used to  show that all vortex 
lines must also pass through a boundary layer. Without wall shear, a forced 
recirculating flow cannot achieve steady state. (In the one-dimensional flow, the 
inertial forces are zero and the boundary-layer concept invalid ; so (10) is satisfied by 
u - 1/v. For a recirculating flow, however, the requirement that Fo - up x up 
excludes this possibility.) 

Equation (10) has implications regarding the position of the eye of the poloidal 
vortex and the axial lengthscale in the unforced region. 

Consider first the inviscid solution of the equations of motion. The streamlines 
cannot be closed in the ( r ,  2)-plane, since (10) could not then be satisfied. It follows 
that the only permissible inviscid solution of the equations of motion is that shown 
in the top half of figure 5 (marked forced region and overlap region). The streamlines 
are parallel to the cylinder wall at the bottom of the forced region, and remain 
parallel, so that the streamlines do not close. Outside the forced region the inertial 
forces are zero since all axial gradients are zero. 

When we allow for a small but finite viscosity, we obtain the flow structure shown 
in figure 5. The upper half of the flow remains inviscid, to first order in R-l. However, 
the boundary layer, which grows from the stagnation point, will eventually turn the 
flow, creating a closed eddy. The lower half of the flow is diffusive in nature. It is 
where the energy and momentum created in the forced region is destroyed. Diffusion 
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becomes important in the unforced region, not because the shear terms become 
larger, but because the inertial terms become smaller, since, as we shall see, the axial 
lengthscale becomes large. 

Thus we see that the eye of the poloidal vortex cannot lie in the forced region, since 
the flow there is essentially inviscid, but lies in the overlap region. 

We may also use (10) to estimate the axial lengthscale in the unforced region. A 
laminar boundary layer on the wall grows at a rate 

s - ($. 
Since each streamline must pass through this boundary layer, this suggests that the 
axial lengthscale in the diffusive region, L, may be obtained by substituting 6 - R 
and z - L into this equation, giving 

L - R x R .  (11) 

This result implies that the swirl penetrates well beyond the immediate vicinity of 
the forced region. 

If (8) is integrated over a volume bounded by T = 0, r = R,  z = 0 and z = zo, we 
obtain an angular momentum integral. If T, is the net torque applied to the control 
volume (magnetic plus shear), then 

T, = % p F T u , d r .  (12) 

The integral on the right of this expression is the flux of angular momentum through 
the surface z = zo. If we take zo = m, so that the control volume is the whole flow 
field, then the applied magnetic torque is balanced by shear on the walls 

We now take zo to coincide with the bottom of the forced region, or more precisely, 
to lie in the overlap region. We may neglect wall shear in the forced region in 
comparison with the total wall shear. If 4, and 4, are velocity components at the 
bottom of the forced region, then 

~ S R F B r 2 d r d Z = ~ ~ T 2 u e 4 ~ d r .  0 0  

If we now combine these two results, and substitute for Fe using 

This shows that the total applied magnetic torque is equal to the 
momentum out of the forced region, which in turn is equal to the torque due to-wall 
shear. Equation (13) may be used as a basis for dimensional analysis. We shall 
consider the forced and unforced regions separately. 

( l ) ,  we obtain 

(13) 

flux of angular 

Forced Region: Comparing inertial terms in (9) we deduce that, u, - ug, while 
comparing the first two terms in (13), we see that ueu, - r2. In addition, the 
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continuity equation gives us u, - uz;  thus we have the following scaling law in the 

Note that the secondary flow is as large as the primary flow. 

- forced region : u, - ue - u, - v. 
Unforced Region : Compatibility of the forced and unforced regions requires ue N u, - Y, while comparing the first and last terms in (13) we find V2R3 - R2v(ue/R)L. In 
addition, the continuity equation gives, u,/R - uz/L. Introducing a Reynolds 

Y R  number 
[w=- ,  

V 

we deduce the following scaling laws in the unforced region, 

L - R x R. u0 - U ,  - Y ,  U ,  - U / R ,  
Note that this estimate of the axial lengthscale L is the same as that given by 
(11). 

These results are only valid if the fluid is allowed to develop its natural lengthscale 
L. If the column is truncated, so that the poloidal flow is mechanically forced to 
recirculate prematurely, then diffusion processes do not have time to act on the fluid 
in the unforced region. The nature of the flow is then completely transformed. This 
is considered briefly in $8, and in more detail in Davidson (1986). 

5. Symmetry of the flow and the form of the inviscid solution 
It has been assumed that the axial lengthscale in the forced region is R ,  and shown 

that the resulting axial lengthscale in the unforced region is 08 x R.  It follows that 
axial derivatives in the unforced region are negligible, while those in the forced region 
are of the same order as the radial gradients. However, in typical magnetic stirring 
applications where L, w R we shall see that, in both numerical and laboratory 
experiments, axial derivatives in the forced region are significantly smaller than 
radial gradients. This is illustrated, for example, in figure 9 which shows the axial 
variation in computed angular velocity. These gradients are dictated by the spatial 
distribution of the body force. If the axial rate of decay of the body force is 
sufficiently rapid, then we would not expect the axial gradients to be small. We shall 
make the assumption au/& -4 au/ar in the analysis which follows. This allows some 
convenient simplifications in the equations of motion, although this does place a 
restriction on the axial variation of the body force, f (z /R) .  (Note that if axial 
gradients are small, then continuity gives us, u, + uz.) 

When axial derivatives are neglected, the azimuthal vorticity is given by 

w - _ _  auz 
'- ar '  

The equations of motion (8) and (9) become 
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The last equation is derived from the radial component of the Navier-Stokes 
equations and allows the pressure distribution to be calculated once the angular 
velocity is determined. 

It is convenient to introduce the Stokes stream function 11- to satisfy continuity of 

We may expand + and f as power series in r about the axis 
m 

n-1 
II. = X gn(z) rn 

m 

n-1 
f = C hn(z)rn 

If these are substituted into the transport equations, and coefficients of rn equated 
to zero, we obtain a series of recurrence equations for the coefficient functions gn(z) 
and hn(z). Provided the shear terms are retained in the original equations, it may be 
shown that + and r are both even in r. We therefore introduce a new variable s 
defined as 

s = r2. 

When written in terms of s, the transport equations are simplified. 
If we restrict attention to the forced region, then we may drop the shear terms in 

(14) and (15) along with the corresponding no-slip boundary conditions. In  order to 
obtain a universal solution of the transport equations, for all forms of f(z), it is 
convenient to introduce a ‘stretch variable’ p for the forced region, defined as 

The inviscid equations of motion become 

The axial coordinate z does not appear explicitly in these equations, except as a 
dummy variable. In addition, the depth functionf(z/R) does not appear, except in 
the integral (which we could normalize as unity). It follows that, provided FB is linear 
in r,  there is a universal solution to the inviscid equations for r and 11- in the 
independent variables s and p. 

One result of introducing the variable p is that the region lying between the 
bottom of the forced region and z+ 00 is compressed onto the surface p = 1. 
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6. Some features of the flow in the overlap region 
It is shown in Appendix B that, to accommodate the change in axial lengthscale, 

the flow in the overlap region is almost parallel, axial derivatives being zero to first 
order in R-'. It is also shown that this overlap region is essentially unforced and 
inviscid (to first order in R-l). 

The numerical experiments described in $8 show that, at the bottom of the forced 
region, u, is linear in r ,  and u, parabolic in r 

uo = Qr, (19) 

u, = $c(R2-2r2), i.e. 3 = c ,  (20) r 

where 51 and c are constants. Note that (20) implies that the eye of the vortex lies 
at r = R / d 2 .  

These velocity profiles are interesting in that they are the only kinematically 
allowable profiles which reduce to zero the diffusion terms in the transport equations 
(14) and (15). Thus the overlap region is one in which wo/r  and u,/r are constant, and 
the shear terms in the transport equations are zero. This is similar to the situation 
described by Batchelor (1956), suggesting that the explanation for the observations 
may lie in the radial diffusion of angular momentum and azimuthal vorticity 
between streamlines. However, i t  is essential to Batchelor's analysis that the 
streamlines be closed in a region of small viscous and magnetic forces. This is not the 
case here. I n  addition, Batchelor's analysis predicts a free vortex, whereas we 
observe a forced vortex. 

An alternative explanation of (19) and (20) is that au,/az and au,/az may be zero 
to second order in R-' in the overlap region. This would ensure that the inertial forces 
are zero to second order in R-', and consequently that the shear terms are zero to first 
order. Equations (19) and (20) would then follow. 

It is interesting to note that, in the numerical and physical experiments described 
in $8 and $ 12, uo and I u, I are observed to  have maxima, with respect to z, in the 
overlap region. It is possible to explain the existence of the maxima in uo and I u, I by 
an interpretation of the flow-field geometry. That I u, I exhibits a maximum at the 
bottom of the forced region follows from the fact that across the eye of the eddy 
u, = 0 (parallel flow). That u, should exhibit a maximum is less clear. However, it is 
shown in Appendix A that it is a feature of the inviscid equations of motion that 
uo increases with depth from the surface down to the bottom of the forced region. We 
expect, however, that in the unforced region uo will decay with depth. It follows that 
uo must have a maximum in the vicinity of the bottom of the forced region. (It is 
somewhat surprising that the swirl is largest at the very point at which the driving 
force drops to zero.) Note, however, that  the existence of these maxima does not 
ensure that au,/az and au,/az are zero to second order (in W') throughout the 
overlap region, and therefore does not explain (19) and (20). 

7. An approximate solution to the flow in the forced region 
In  this section we shall consider constructing an approximate solution to the 

transport equations. We shall incorporate into the solution the observed feature that 
u, is parabolic in r ,  and uo linear in r in the overlap region. 

We expect that the velocity components have a relatively simple functional 
dependence on r .  This suggests that they could be reasonably approximated by low- 
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order polynomials in r. Consequently we look for an approximate solution of the form 
shown below. (It isAconvenient 40 use the dimensionless variables introduced in 
Appendix B where + = $/VR2,  r = r'/VR, B = s /R2,  and X = z/R) 

$=+uo(p)B( l -B) ,  (21)  

i. = Q,(p)  B+Q,@)i;z,  (22)  
where Q,(l) = 0, uo(0) = 0.  

These may be regarded as Maclaurin series for $ and r in which terms of order 
r6, and higher, are discarded. Expressions (21)  and (22)  satisfy the boundary 

$ = O  ons=0,R2,  z =0,  conditions, 

r=O ons=O. 

By ensuring 0,(l) = 0 we have incorporated the empirical observation that Ue is 
linear in r in the overlap region. We must choose the dimensionless functions uo, 
0, and 0, to satisfy some aspects of transport equations (17)  and (18). Since uo and 
0, are the first terms in a power series expansion about r = 0, we will choose these 
functions to satisfy the equations of motion near the axis. Substituting (21) and (22)  
into the equations of motion, and letting s tend to zero, we obtain 

2u0 u;@) = 52, q@). (24)  

We now choose 0, to satisfy the angular momentum integral (12) .  This ensures 
that, at any given depth z,,, the net magnetic torque applied to the fluid in 0 -c z < 
zo is equal to the net flux of angular momentum across the surface z = zo. 
Substituting the expressions for $ and r into (12)  gives 

Solving (23) ,  (24)  and (25)  subject to the boundary conditions uo(0) = 0, 0,(1) = 

(26) 

(27)  

0, we obtain 1 
u0@) = --52, sinh ( 2 / 2 p ) ,  

4 2  

a,@) = 0, cash ( d 2 P ) ,  

where 
m 

0: = f Jo f ( X )  dx. 

Note that 0, is an increasing function of z which is consistent with the analysis 

The velocity components Ue and u, are given by 
given in Appendix A. 

u, = vu0(p)[l-27a], (30)  

(31)  ue = JTQi@) 7 + Q3@) v31, where 7 = r /R.  
Note that (30) implies that the eye of the poloidal vortex lies at  7 = l / d 2 .  
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We now compare this solution with numerical experiments performed on the 
Reynolds-averaged Navier-Stokes equations, with approximations for the Reynolds 
stresses. 
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8. A comparison of the approximate solution for two-dimensional stirring 
with numerical experiments 

We shall compare the results of $7 with some computations of turbulent flow. 
There are two reasons for wishing to compute turbulent, rather than laminar, flow. 
Firstly, nearly all swirling flows of interest in practice are turbulent. The second 
reason is that the laminar solution is probably unstable by Rayleigh's criterion 
(ar/ar < 0) for high Reynolds numbers. (There is a disadvantage, however, in 
computing turbulent flow, in that, since R, - 30, the asymptotic boundary-layer 
theory is not strictly valid.) 

The Reynolds stresses are estimated using the standard (k, €)-model described by 
Rodi (1984). This is an eddy viscosity model of turbulence in which the Reynolds 
stresses are proportional to the rate of strain. The eddy viscosity V, is related to the 
turbulence kinetic energy k and viscous dissipation, e.  The (k, €)-model proposes 
transport equations for both k and B .  The transport equation for k is based on the 
turbulence kinetic energy equation, while the transport equation for E is empirical. 
There is some debate regarding the generality and validity of the e equation, and 
consequently the (k, €)-model must be used with caution. We expect, however, that 
the flow in the forced region is largely controlled by the inertia of the mean flow, and 
therefore is insensitive to the details of the shear. 

The computations were performed using a finite-difference code employing a 
power-law differencing scheme, described by Patankar (1980). The body force is that 
given by equation ( l ) ,  with a fourth power-law decay for f ( X )  

f ( X )  = 2[1 + x y .  
The effective depth of stirring is X w 2.3, corresponding to the force having 

dropped to 3 % of its original value. This figure of 3 YO is chosen to define the edge 
of the forced region since an appropriate cutoff criterion is R;l (see Appendix B), and 
we shall see that R, N 30. However, since the drop-off rate for Fe is rapid (F8 - X-4), 
the effective depth of stirring is insensitive to the exact interpretation of what 
constitutes an insignificant level of force. 

It is predicted in the analysis of $4 that the velocity in the forced region should 
scale linearly on P, and be independent of wall shear. In order to test this hypothesis, 
two different cases were computed, corresponding to different magnitudes of body 
force 

In the first case Fe was chosen such that P = 1 cm/s, while in the second case Fe 
was calculated using 7 = 10 cm/s. We shall see that the computed velocities in the 
two cases are almost identical in distribution and a factor of 10 different in 
magnitude. In order to confirm that this scaling is independent of wall shear, 
significant wall roughness was introduced in the second case. The wall roughness is 
specified in terms of a roughness parameter E = v / V *  k', where k' is the roughness 
height (see Rodi 1984). A value of E = 0.1 was chosen which corresponds, 
approximately, to k' = 0.5 mm for the Reynolds number used. 
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Wall 

Case (kg/m3) (m”4 (m) (m/s) R =  VR/v  k ’ (m)  
P V R 7 roughness 

1 7 x loa 10-6 0.1 0.01 103 o 
2 7 x lo* 10-6 0.1 0.1 104 o . 5 ~  10-3 

TABLE 1. Physical properties used in the computations 

Forced 
region 

- li 
FIUURE 6. Computed poloidal flow pattern and velocity profiles for case 1 .  

The radius of the column was chosen to be 10 cm. Details of the relevant physical 
properties used in the computations are given in table 1. 

In both the cases analysed the radial velocity was found to be of the order of 
$ uz, even in the forced region. Since V - up = 0, this confirms that axial derivatives are 
significantly smaller than radial derivatives, an assumption made in the previous 
section. 

Figure 6 shows part of the computed poloidal flow pattern and some representative 
velocity profiles for the smooth-wall case. The difference between the axial and radial 
lengthscales, particularly in the unforced region, is clear. The eye of the poloidal 
vortex lies at, 

zo = 2.5R, 

In the case of the rough-wall flow, the eye of the vortex lies at 

ro = 0.71R. 

zo = 2.2R, ro = 0.70R. 
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0.5 1 .o 
r l R  

FIGURE 7. Comparison of computed and theoretical swirl velocities, ( z  = 0). Case 1, smooth wall 
R = lo3; case 2, rough wall R = 10'. 

In  both flows au,/az was found to be zero at z = zo, corresponding to ur(r, zo) = 0 

These computed results should be compared with the theoretical predictions of $4 
(parallel flow). 

and equation (20)  for the position of the vortex eye 

zo x 2.3R (bottom of the forced region), 

1 
ro = - R (parabolic profile for uz). 

d 2  

For both cases analysed, the computed axial velocity profile at the bottom of the 
forced region u,(r, zo) deviated from the parabola given by (20) by no more than 4% 
(excluding the boundary layer). 

Figures 7 and 8 compare theoretical and computed velocity profiles for ue a t  the 
plane of symmetry ( z  = 0) and approximately at the bottom of the forced region 
(z = 2.2R). Note the Ug is approximately linear in figure 8. There is a reasonable 
correspondence between the computed profiles and the approximate solution given 
by (26) to (31). Clearly ue scales on V .  

The computed eddy viscosity varies throughout the flow field. Near the wall, i t  
increases linearly with distance from the wall. In  the core, vt is approximately 
constant, decaying slowly with depth. Based on a core eddy viscosity, R, = VR/v ,  - 
30+40 for both the smooth- and rough-wall flows. 

One feature of the flow which is given by the computations, but not the analysis 
in $7, is the penetration of the swirl beyond the forced region. Figure 9 shows the 
variation of core angular velocity with depth for both cases. The swirl extends well 
out of the stirred region. It is clear from a comparison of this figure with figures 7 and 
8 that axial gradients in ue are very much smaller than radial gradients, even in the 
forced region. This is also observed in the laboratory experiments. 
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FIQURE 8. Comparison of computed and theoretical swirl velocities, (z = 2.2R). Case 1, smooth 
wall R = loa; case 2, rough wall R = lop. 
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FIQURE 9. Axial variation of computed core angular velocity. 
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Another interesting feature of this figure is that the core angular velocity increases 
with depth from the surface to the bottom of the forced region. This is consistent 
with the analysis of Appendix A and indicates that inertia is indeed dominant in the 
forced region. This behaviour is also seen in the physical experiments. Appendix A 
also shows that, based on an inviscid analysis, u, should be an increasing function of 
depth near the wall. Unfortunately, this cannot be confirmed by the computations 
because of the intrusion of the boundary layer on the inviscid velocity profile. 

It is of some interest to investigate what occurs if the flow is prevented from 
adopting its natural recirculating lengthscale, L = R, R. This is what happens when 
swirl is generated in a finite-length cylinder. The endwalls mechanically force the 
flow to recirculate prematurely and the diffusion processes which normally occur in 
the unforced region do not have time to act fully on the fluid. 

Some preliminary numerical experiments were performed on finite-length 
cylinders. These are discussed in detail in Davidson (1986). It was found that the 
introduction of an endwall substantially alters the structure of the flow field. The 
angular momentum is larger, and the secondary flow smaller, in a finite-size vessel 
than in the corresponding infinite vessel. That the swirl is increased seems plausible, 
since angular momentum does not have time to diffuse from a fluid particle to the 
sidewall as it recirculates through the unforced region. The fluid particle thus has a 
higher swirl velocity on its arrival back at the forced region. An alternative way of 
explaining why u, must be higher in a truncated cylinder is to consider the overall 
torque balance. Since the swirl does not extend over its natural length, L = 08, R,  the 
fluid must spin faster to produce the same net wall shear required to balance the 
applied magnetic torque. 

Having established that the swirl is larger in a truncated cylinder, it is possible to 
explain, at least qualitatively, why the secondary flow is smaller. We have seen that 
the applied magnetic torque is locally balanced by a flux of angular momentum out 
of the forced region. This angular momentum flux, U - V T ,  is the product of the swirl 
and the secondary flow. It follows, therefore, that if the swirl is increased, then the 
secondary flow must decrease. 

It is not only the magnitude of the velocity components which are altered, but also 
the distribution of velocity. In the infinite cylinder case, the axial velocity is 
parabolic in r throughout most of the forced region. When the cylinder is truncated, 
however, we get a different profile. The core axial velocity becomes more uniform, 
decreasing in magnitude, and the eye of the vortex moves closer to the wall. The axial 
flow near the wall begins to resemble that of a wall jet. 

It is obviously important to distinguish clearly between infinite and finite cylinder 
flows. We shall now consider some laboratory experiments of magnetically-driven 
swirl. 

9. Nature of the laboratory experiments 
The one-dimensional swirl flow of liquid metal, driven by magnetic forces, has been 

studied experimentally by Robinson (1973) and Tacke & Schwerdtfeger (1979). Both 
compared their experimental results with computations performed using eddy- 
viscosity models of turbulence. They found a reasonable correspondence between 
experiment and computation, (to within 30% in the latter case). In our experiment, 
we extend this work to include secondary flow, by introducing an axial variation in 
the magnitude of the body force. This flow is precisely that encountered in the 
electromagnetic stirring of continuously cast steel. 
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The main points which are looked at in the experiments are: 
(i) the scaling law for the swirl. In particular, does uo scale on V, as predicted 

in $41 
(ii) the position of maximum swirl. This is predicted in Appendix A to occur a t  

the bottom of the forced region ; 
(iii) the penetration of swirl outside the forced region, and its rate of decay with 

depth. (The axial lengthscale in the unforced region is predicted in $4 to be of the 
order of R, R, where R, = VR/v, x 30 for typical geometries.) 

The local azimuthal velocity is measured using a drag probe, and the mean core 
rotation rate (averaged over a 46 mm radius) is measured using a rotating vane. The 
drag probe is similar to that used by Moore (1982) to study induction-furnace flows. 
The designs of the drag probe and rotating vane, and the errors involved in using 
these instruments, are discussed in detail in Davidson (1986). 

Several problems arose in taking and analysing these measurements. Firstly, the 
magnetic stirrer used has been empirically developed for industrial use, and 
generates a complex three-dimensional magnetic field. Some modelling of the 
behaviour of the stirrer is required in order to calculate the applied body force. In 
addition, it was found that the body force J x  B has a non-axisymmetric component, 
and is not linear in r throughout the range 0 < T < R. Axial symmetry and a linear 
variation of J x  B in r had both been assumed in the earlier analysis. We shall show 
that the latter effect is especially important, since a theoretical estimate of the total 
applied magnetic torque, based on an assumed linear variation of J x  B with r ,  may 
overestimate the true torque by as much as 60% in this case. 

There were also difficulties in measuring low mean velocities, (below about 
0.1 m/s) so that the extent of the swirl below the forced region could not be measured 
accurately. This was accentuated by the tendency of the vortex core to precess in an 
unsteady manner, a characteristic feature of swirl flows (see Gupta, Lilley & Syred 
1984). 

These problems make a direct comparison between theory and experiment 
difficult. Consequently, in comparing the measurements with the theory, the main 
emphasis is on the structure of the flow and on the scaling law for the velocity. 

10. Design of the experiment 
A copper tube containing mercury had a magnetic stirrer mounted at its top, as 

shown in figure 10. The copper tube had an internal radius of 72.5 mm and a depth 
of 800 mm. The body force generated by the stirrer is limited to a relatively shallow 
surface layer of mercury. The field frequency is 50 Hz. 

It was decided to simulate a rough surface on the bore of the cylinder for two 
reasons. First, during the stirring of cast steel, the melt sees the dendritic surface of 
the solidifying steel. This surface is rough, with a typical roughness depth of about 
1 mm. The second reason is that swirl will penetrate a distance from the surface 
which is of the order of R, x R. Thus, to simulate stirring of a semi-infinite column, 
a deep tube is required. The tube used here has a depth of - 11R, and some 
preliminary tests with a smooth bore showed that the swirl velocity was still 
significant in the vicinity of the base plate. However, introducing a rough surface has 
the effect of increasing the eddy viscosity and hence reducing the effective Reynolds 
number. The net result is a reduction in the penetration of swirl below the surface. 
With a rough surface, the swirl was found to decay to almost zero near the base plate, 
thus simulating semi-infinite stirring. 
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FIGURE 10. Experimental rig. 

Table 2 shows characteristic values for the physical parameters of the experiment. 
For comparison, the equivalent values in a typical industrial steel stirrer are 
given. 

The magnetic stirrer used here was developed for commercial use by T.I. Research 
Laboratories (TIRL). It generates a rotating magnetic field above the surface of the 
liquid metal, and relies on the fringing of this field onto the liquid surface to produce 
rotation. 

An idealization of the stirrer is shown in figure 11.  The currents in the four limbs 
of the copper square are separated in phase by 90'. The stirrer is designed to generate 
two, two-dimensional, fringing fields, oscillating 90' out of phase and mutually 
perpendicular. This produces a pseudo-rotating field as shown in figure 11. The 
magnetic field is inevitably more complex and fully three-dimensional than the 
biplanar distribution shown in this figure. However, measurements show that the 
biplanar model is a good approximation throughout most of the fluid, and we shall 
adopt this model here. The errors resulting from this approximation are considerably 
less than the error involved in linearizing F, in r about the axis, and therefore are 
acceptable. 

We shall now consider the shape of the two-dimensional field generated by 
opposite pole pieces. For simplicity, the only sources of magnetic flux are assumed 
to be the pole piece faces. Adopting the low-frequency approach outlined in $2, we 
may ignore attenuation of the magnetic field by eddy currents in the fluid. The 
problem then becomes that of plotting the free-space magnetic field ( V - B  = 0, 
V x B = 0 )  generated by two magnetic-flux sources, A and D in figure 11, and two 
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Parameters 

Physical constants 
Radius 
Density 
Conductivity 
Viscosity 
Meniscus level 
field strength 

Derived groups 

Skin depth in 
fluid a t  50 Hz 

Hartmann number 

Characteristic 
velocity 

Reynolds number 

Value in a 

experiment application 
Value in typical stirring 

Symbol Units/groups (mercury at  20 "C) (steel a t  1600 "C) 

R cm 
P 

V m5/s 
B Gauss 

kg/m3 
9-1 m-l U 

Ha B R k y  

7.25 10 

1.05 x 10' 
0.115 x 10-o 0.886 x 
300 300 

13.55 x lo8 7.07 x 103 
0.715 x 10' 

6.95 

56 

P 34 

8.42 

32 

53 

R PR/v 0.21 x 10' 0.06 x 10' 

TABLE 2. Characteristic parameters of the experiment 

magnetic-flux sinks, B and C. The simplest boundary condition on the field is to 
regard the tube wall as perfectly conducting (Ban = 0), and take it to be in line with 
the pole piece faces as shown in figure 11. (Strictly, this is only valid if the tube has 
a square cross-section.) 

There is no flux linkage between the top pole pieces, B and D, since there is a low- 
reluctance mild-steel path provided between them (not shown in figure 11). The flux 
prefers to take the low-reluctance path rather than the high-reluctance air gap across 
the tube. 

We may introduce a vector and scalar potential for B. In two dimensions, say the 
(z,y)-plane, this takes the form 

(For the present purposes, the x and y coordinates lie in the vertical plane shown in 
the top view of figure 11.) $ is the streamfunction of the field. It is convenient to 
introduce the complex potential, 

B = -V$ = v x (-*k). 

P(z) = $+ jy? where z = s+ jy. 

The complex potential for a source q, discharging into a channel of width a,  is given 
by Lamb (1959), 

P(z)  = --In sinh - . 
7t (3 

Using this potential, one can introduce distributed sources at A and D and 
distributed sinks at  B and C. The potential for these distributed sources and sinks is 
given in Davidson (1986). By symmetry, the strengths of the source and sink at  A 
and C are equal, as are those at  D and B. However, the top pole pieces have a 

4 FLY 186 
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FIQURE 11.  Idealized view of stirrer. 

strength weaker than that of the bottom pole pieces, since there is no flux linkage 
between D and B. The ratio of the top-pole-piece strength to the bottom-pole-piece 
strength is chosen such that B and D are at  the same potential. The bottom-pole- 
piece strength is given by Ampkre’s law 

[B-dr = ,d (I = copper bar current). 

The resulting magnetic field is shown in figure 12. In $12 we shall compare this 
simple two-dimensional field with measurements of the magnetic field generated by 
the experimental stirrer. Somewhat fortuitously, it turns out that this simple model 
gives a reasonable approximation of the real field, except in the region of the pole 
pieces. However, we shall use the measured values of magnetic-flux density, rather 
than this model, to calculate the body force. 

11. The nature of the body force generated by the magnetic field in the 
experiments 

Consider any irrotational two-dimensional field. For convenience, let this field lie 
in the (x, y)-plane 

B, = Bs(x, y) i+B,(z,  y)j = V x ( -  $k). 

a$ 
at 

The current density is 
J =  g-k, 
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and the body force is given by 

If $ is sinusoidal, $ = $ sin (wt), then 

a$ F = J X  B = -u-V$. 
at 

F = -&~v(P) sin (2wt).  

93 

This force is conservative and consequently it is unable to produce any fluid 
motion. (The result does not hold if B is rotational.) This is an important result with 
regard to the stirrer used here. If we are looking for the rotational body force 
resulting from two, low-frequency, perpendicular, phased, two-dimensional fields, 
then we must take the cross-product of the current density generated by one field 
with the other field, and vice versa. A current reacted against its own field will 
produce only a conservative body force. 

In the TIRL stirrer we have two-dimensional fields in two mutually perpendicular 
vertical planes. Each of these produce currents in a horizontal plane. The rotational 
part of the body force arises from reacting these horizontal currents against the 
vertical components of the complementary fields. The resulting force lies in a 
horizontal plane and will tend to rotate the fluid in the same direction as the 
field. 

The magnetic field and current density in a TIRL stirrer may be expressed in the 
following form (where z is along the axis of the column) 

where 

B = Bl(x,z) cos(wt)+B,(y,z) sin(wt), 

4 = (B,,, 0, Bl,), 
B, = (0, BZ,' B,,), 

and J = J1(x, z) sin (wt) + J,(y, z) cos (wt) ,  

where J1 (0, Jig, 01, 

Je (Jzz, 0,O). 
The rotational part of the body force is given by 

F = J1 x B, sin2 (wt) +J,  x Bl cos2 (wt). 

Extracting the steady part of this force, we obtain 

F = t(J1,BzZ,-Jz,Biz,O)* 

Note that there is no axial component of force. 
We now expand the Components of B and J as Taylor series about the z-axis. To 

fist order in x/R and y / R ,  the current density is constant in x and y, while the 
vertical components of magnetic field ' 

J,, x cwBRg ($) 
J,, NN cwBRg ($) 
B1,x -Bh(-) z x  

R E  

vary linearly with distance from the axis. 

" Y  to fist order in - and - , 
R R  

4-2 
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whcre g ( z / r )  and h(z/R) are dimensionless functions and B is a characteristic field 
strength. It may be shown that if h(z/R) > 0, then g(z/R) > 0. 

Substituting these expressions into the equation for the steady part of the 
rotational body force, we deduce 

F = &rawB2g (i) h ($)( - y, x, 0). 

If we letf(z/R) = g ( z / R )  h(z/R),  and change from a Cartesian to a cylindrical polar 
coordinate system, then this expression for the body force becomes 

which is the same as equation (l) ,  and is the idealized force distribution used in the 
analysis of §§3-8. 

This expression is only valid near the z-axis. In general, we would expect higher- 
order terms in r/R to be significant for larger values of r .  Magnetic field measurements 
made in the stirrer, and inferred eddy current distributions, show that the products 
J,, B,, and J,, B,, are approximately linear in x and y, to within 20 YO, throughout 
the range 0 < r <  0.8R. However, they are significantly lower than the linear 
variation would imply in the range 0.8R < r < R. It is estimated, from measured 
values of B, that an assumed linear variation of F0 in r will lead to an overestimate 
of the net applied magnetic torque of about 60%. 

None the less, in order to compare the measured velocities with the theoretical 
analysis, we must make the approximation that FB is linear in r .  We shall follow this 
route, while remembering that this approximation is relatively poor and will lead to 
a significant overestimate of the net applied torque. (Note also that nonlinear 
variations of J, ,  B,, and J,, B,, with x and y lead to a non-axisymmetric body force 
and a radial component of force.) 

12. Experimental results 

The magnetic field was measured at 1 cm intervals throughout the cylinder. 
It was suggested in $2 that the applied magnetic field in the mercury may be 

considered fully diffused, and that a low-frequency approach to the problem should 
be a good approximation. The simplest way of testing this assumption is to measure 
the magnetic field in the cylinder, with and without mercury present. 

The horizontal component of the centreline magnetic field, for both an empty and 
full tube, is shown in figure 13. It is clear that, within the first skin depth of the 
mercury, attenuation of the magnetic field by eddy currents is negligible. Beyond 
that point, the field is so small that it does not matter whether diffusion is dominant 
or not. 

It is proposed in 8 10 that the applied magnetic field can be approximated by two, 
two-dimensional fields, oscillating 90" out of phase and mutually perpendicular 

12.1. Magnetic-jield measurements and calculation of the body force 

B = B,(x, z )  cos (wt )+B,(y ,  z) sin (wt) ,  

where Bl = (BlW 0, B,,), 

4 = (0, 4,' &A. 
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FIGURE 12. Complex potential plot of two-dimensional field. 
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FIQURE 13. Effect of diffusion on the free space magnetic field. 
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FIGURE 14. Comparison of predicted and measured magnetic flux densities. -, two-dimensional 
theory; + , measured. 

Analysis of the measured magnetic field data shows that B, is sensibly independent 
of y across the width of the pole pieces, and that B, is independent of x in the same 
range. The data also shows that B, and B, are symmetric in both x and y. This 
supports the notion that the field may be approximated by two, two-dimensional 
fields. 

In $10, a simple potential is proposed for Bl(z, z )  (or B,(y, z ) )  which is based on the 
complex potential for distributed sinks and sources. This theoretical field is shown in 
figure 12. In  figure 14, the centreline field strength predicted by the complex 
potential model is compared with the equivalent measured field. While there is some 
divergence between the theoretical and measured fields near the pole pieces, the 
agreement is to within 10% below the pole pieces and in the liquid. 

In order to interpret the velocity measurements it is necessary to determine the 
body-force distribution in the fluid. There are two possible approaches to this. One 
method is to use the two-dimensional, complex potential model of the magnetic field, 
in conjunction with the theory outlined previously. A preferable approach, however, 
is to use the magnetic field measurements, since this assumes less about the 
distribution of B. 

To evaluate FB from the magnetic field data, we have taken advantage of the 
approximate biplanar distribution of B, and used the corresponding theory outlined 
in 8 11. Inevitably, the assumption that B comprises two, two-dimensional fields, will 
lead to some errors in determining J x  B. However, since we have already made the 



Flow in a column generated by a magnetic field 97 

severe approximation that Fe is linear in r ,  these errors should be relatively 
acceptable. 

In order to evaluate Fa, we must first determine the vector potential A 
corresponding to the measured values of B. Paraday’s equation then gives J, and the 
time-averaged body force follows from 

Note that AmpBre’s law cannot be used to determine Jsince V x B = 0, to first order 
in A. 

For a two-dimensional field, A is given by the magnetic streamfunction $. This 
streamfunction can be determined from measured values of the magnetic field by 
application of the appropriate finite-difference formulae. However, it  is desirable to 
relax the magnetic field data before calculating $. There are two reasons for doing 
this. Firstly, the data should be smoothed in some way before applying the finite- 
difference approximations. Secondly, it is only possible to introduce $ if the field is 
truly two-dimensional. In  practice the magnetic field has a tendency to three- 
dimensional behaviour. 

Measurements of Bz(x, z )  on a vertical cross-section of the tube were analysed. If 
Bl were exactly two-dimensional, and there were no errors in the measurements, then 
BS should satisfy 

Inevitably, the magnetic field data did not exactly satisfy this. Consequently, a 
relaxation procedure was applied to the measurements, whereby the residuals (in 
calculating VzBz) were reduced. This changed the original data by, on average, 
6Yo. 

The magnetic streamfunction $(z, z ) ,  vertical field component BJx, z) ,  and 
potential $(x, z )  were then determined from B,(x, z )  by application of the appropriate 
finite-difference formulae to 

The shape of the resulting field is shown in figure 15. This bears a reasonable 
resemblance to the shape of the potential field predicted in $ 10, except in the vicinity 
of the pole pieces. Note that we would not expect the processed experimental data 
to be accurate in the vicinity of the pole pieces. The high field gradients in those 
regions make extrapolations from measurements 1 cm apart very unreliable. 

In 5 11, it was shown that, to first order in r/R,  the magnetic force distribution is 
given by 

Fe = [#B: m ~ r ] f ( z ) ,  

where B,, is a reference field strength. 
Following the procedure outlined in $11, the depth function f(z) has been 

calculated from the relaxed magnetic field data. This is shown in figure 16. It can be 
seen that the force decays rapidly with depth. (Note that, sincef(z) is multiplied by 
u to obtain Fe, the body force above the meniscus is zero, although f(z) is shown as 
non-zero . ) 
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FIUURE 16. Measured magnetic field in a vertical plane of the cylinder. 
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J?IUURE 16. Variation of body force with depth. 
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The reference point for B, was chosen to be on the cylinder centreline, 8 mm below 
the meniscus. The magnitude of B, depends on the stirrer power. A range of stirrer 
powers was available in the experiment corresponding to different transformer 
supply voltages. For maximum power, at which most of the following velocity 
measurements were taken, Bo = 0.0317 T. The corresponding characteristic velocity 
is P = 0.359 m/s. 

12.2. Velocity measurement8 

The signal from the velocity drag probe shows that the flow is turbulent, with the 
typical fluctuating component of velocity being approximately 2 YO of the mean 
velocity. The turbulence lies predominantly in the low-frequency range 0.5 + 7 Hz. 

In this investigation we are not concerned with the details of the turbulence, but 
merely with mean flow measurements. For most measurements, therefore, the drag- 
probe signal was put through a low-pass filter, which suppresses frequencies above 

Hz. However, it was found that the mean flow velocity fluctuated by up to f 10 YO 
with a period of between a few seconds and one minute. This was due to precessing 
of the vortex core, a characteristic feature of swirling flows (see Gupta et al. 1984). 
In taking mean flow measurements, these fluctuations were averaged out over a 
period of time. However, they still caused some problem in obtaining repeatable 
results. 

Using the rotating vane, the variation of average surface angular velocity with 
applied field strength was measured. This is shown in figure 17. It is clear that the 
measured velocity scales linearly on V. The results discussed below were taken at 
maximum stirrer power, corresponding to 

Velocity profiles for ue(r) were measured in the forced region of the flow (z < 13 cm) 
using the drag probe. Figures 18 and 19 give the radial profiles of Ug at z = 2.8 cm and 
z = 7.8 cm. In this region of the flow, the theory indicates that there is a balance of 
electromagnetic and inertial forces. The theoretical curves shown in these figures are 
derived from this balance and so are independent of any model for turbulent shear 
stresses. These theoretical curves are obtained by substituting the appropriate values 
of force integral p, found by integrating figure 16, into equations (27)-(31). The mean 
core rotation rates, measured using the rotating vane, are also shown 

The two experimental measurements are consistent with each other, to within the 
accuracy of the instruments. They also agree with the theoretical curve at z = 2.8 cm 
over the central part of the cross-section. But the theory significantly overestimates 
the velocity in the outer part of the flow, particularly at z = 7.8 cm. The discrepancy 
is as large. as 75% near the wall. The reasons for the difference between the 
theoretical and experimental curves are probably, 

(i) the assumed linear dependence of Fe on r ,  used in the theory, leads to an 
overestimate of the net applied magnetic torque of about 60%. This overestimate 
will manifest itself in the theoretical curves ; 

(ii) the theoretical analysis does not allow for the effects of turbulent shear in the 
forced region. This shear will tend to lower the velocity, particularly near the wall, 
from the value predicted by inviscid analysis. 

The velocity profile in figure 19 appears not to pass through the origin, and this 
must raise questions regarding the validity of measurements made near the z-axis. 
The discrepancy probably arises from a combination of precessing of the vortex core 
and the intrusive nature of the drag probe. These features may also account for the 
difference between the rotating vane and drag-probe measurements. 

In figure 20 the measured angular velocity is shown as a function of depth. Curves 
are given for three different radii, r = 2, 3 and 4 cm. To avoid confusion, some error 

= 0.359 m/s. 
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FIQURE 20. Variation of angular velocity with depth. 
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bars have been omitted from the data points. These error bars are sufficiently large 
for it to be difficult to determine the true shape of the profiles U,(Z). None the less, 
there are two discernible trends in the data. Firstly, the swirl extends well out of the 
forced region, the lengthscale for the axial decay of swirl being of the order of 15R. 
This is consistent with the theoretical discussion given in $4, in which the axial 
lengthscale in the unforced region is predicted as L = R, R. 

The second trend which is evident in figure 20 is that there is a maximum in 
ue/r near the bottom of the forced region. This is also consistent with the theoretical 
arguments presented in $6 and Appendix A, and indicates that inertia is dominant 
over shear in balancing the body force. 

13. Conclusions 
We have shown that an important distinction between one-dimensional (swirl 

only) and two-dimensional (swirling recirculating) flows is that in the former, since 
there is no secondary flow, the magnetic torque is balanced by shear. When there is 
recirculation, the body force is locally balanced by a flux of angular momentum out 
of the forced region. 

In one-dimensional flow the magnitude and distribution of the swirl is very 
different depending on whether the flow is laminar or turbulent. This reflects the 
different nature of viscous and Reynolds stresses. The turbulent case may be 
adequately modelled using a simple ' mixing-length ' representation for the Reynolds 
stresses. 

When there is recirculation, order-of-magnitude analysis and computations show 
that the secondary flow is as large as the primary swirl flow. This secondary flow, 
which results from differential rotation, sweeps the angular momentum into the 
unforced region so that the forced vortex ultimately penetrates some distance 
beyond the driven region. The axial lengthscale of the recirculating eddy is controlled 
by wall shear and is sufficient to ensure that the applied magnetic torque is balanced 
by shear on the sidewalls. As the wall friction is increased, the degree of penetration 
of swirl is decreased, although its maximum magnitude remains unaltered. This 
maximum occurs just at  the level where the body force drops to zero, showing that 
it is the history of forcing of fluid elements that determines the swirl, not the local 
value of the body force. 

An approximate solution to the inviscid equations of motion is proposed for the 
forced region in which the overall angular momentum budget is satisfied. This 
solution incorporates the empirical observation that u, is linear in r in the overlap 
region. A comparison of this approximate analytical solution with numerical 
experiments gives satisfactory results. 

Many of the broad trends predicted by the analysis have been reproduced 
experimentally. Measured values of swirl are shown to scale on = {B(cr/po)~}wR, 
and to have a maximum at the bottom of the forced region. In addition, the swirl 
extends well out of the driven region and decays slowly with depth, with an axial 
lengthscale compatible with the theoretical estimate of L - R, R - 30R. 

On comparing measured values of swirl with that predicted by the theory, the 
inviscid analysis tends to overestimate the observed velocity. The difference is most 
marked near the wall where the theory overestimates the swirl by as much as 75%. 
Part of this discrepancy is due to the fact that the theoretical analysis assumes 
implicitly that F, varies linearly with r ,  which leads to an overestimate of the total 
applied magnetic torque of 60 YO. In addition, the theory does not allow for the effects 
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of shear in the forced region. This shear will reduce the velocity, particularly near the 
wall, to a value below that predicted by the inviscid analysis. Despite these 
discrepancies, the measured velocity field is broadly in line with that predicted by the 
theory. 

The authors wish to thank T.I. Research Laboratories for their support in this 
study and also Dr F. Boyson for his assistance in the numerical computations. The 
computer code used was a modified version of FLUENT made available by Creare 
R & D. 

Appendix A. Variation of swirl with depth in the forced region 

near the wall ( r  = R). 
We shall show that, in the forced region, u, increases with depth near the axis and 

The governing equations are 

u . v  p] = a p  (F). 

The first equation shows that the angular momentum must increase along a 
streamline. Near the wall we have 

from which we deduce &,/az > 0 on T = R. 
Near the axis, however, the situation is less clear. In the vicinity of the axis we 

have a forced vortex, r x n(z) re, and u, x uo(z), where uo(z) is negative. Substituting 
these expressions for u, and r into the transport equation for r (u, may be derived 
from V . u  = 0), and letting r tend to zero, we deduce 

This equation shows that there are two ways in which we may guarantee that r 
increases along a streamline. Either 52 increases as the fluid particle moves towards 
the surface, or the streamline turns radially outwards into a region of higher swirl. 
I t  is not possible to tell from the angular momentum equation which of these two 
mechanisms is dominant. We must turn to the equation for azimuthal vorticity. 

We know that oe/r is negative at the bottom of the forced region on the axis, 
increasing to zero at the surface. This suggests that o,/r increases along a streamline 
near the axis, and it follows from the transport equation for w,/r that #(z) > 0. 

We have shown, therefore, that u, is an increasing function of depth in the forced 
region, both near the axis and near the wall. This result is somewhat surprising. It 
contrasts with the situation where shear, rather than inertia, is dominant, in which 
case we would expect u, to decay with depth. 
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Appendix B. Asymptotic matching of the forced and unforced regions 
Here we consider how the forced and diffusive regions match each other as F,+O 

and the boundary layer grows. We shall show that, in the overlap region, the flow is 
essentially unforced and inviscid, and that axial gradients are zero to first order in 
R-'. It is convenient to rewrite the transport equations (14) and (15) in dimensionless 
form. Following the scaling laws established in $4, we introduce the following 
dimensionless forms of the variables, 

A S  s = -  
R2 ' 

x=- (outer variable), 
R x R  

X = - = - (inner variable). 
R s  

z 

2 x  

For clarity, the hats on 2, $ and s" will be omitted in the following analysis. 

X+m, x+o. 
The overlap region shown in figure 5 exists when we simultaneously take the limits 

Let $ = ! P I  + € p  + € 2 p  + . . . , 
r = r [ 0 1  + sr"] + s 2 r [ 2 1  + . . . . 

These expansions may be substituted into the transport equations and coefficients 
of en equated to zero. The resulting zero-order equations in the forced region are, 

These are, of course, the inviscid equations of motion. In the diffusive region the 
appropriate axial variable is x. If we assume that for large X the dimensionless force 
functionf(X) is of the form X-n(n 2 2), then to zero order in s, the forcing term drops 
out of the transport equations in the diffusive region. The resulting zero-order 
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We now consider the overlap region where x -+ 0 and X -+ 00. We expect that this 

Let 

Rewriting the transport equations in terms of q and taking the limit s+O, with q 

region is, to zero order, both unforced and inviscid. 

q = X e ,  O < a < l .  

fixed. we obtain 

These equations represent unforced inviscid flow. They are appropriate to the 

It is instructive to match gradients in the overlap region. 
overlap region since if E + 0, with q fixed, then X -+ 00 and x + 0. 

a r r o l  
from which Lim - = 0. (B 5 )  

x + m  ax 

Similarly, 

In order to accommodate the change in axial lengthscale, axial derivatives of Po] 
and $Lo] are zero in the overlap region. This is shown in figure 5. Note that conditions 
(B 5 )  and (B 6) are sufficient to satisfy the transport equations (B 3) and (B 4) in the 
overlap region. 
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